Magnetohydrodynamic Time-Dependent Bio-Nanofluid Flow in a Porous Medium with Variable Thermophysical Properties
نویسندگان
چکیده
In this work, a theoretical model with numerical solution is brought forward for bio-nanofluid varying fluid features over slippery sheet. The partial differential equations (PDEs) involving temperature-dependent quantities have been translated into ordinary (ODEs) by using similarity variables. Numerical verifications done in three different methods: finite difference method, shooting and bvp4c. To figure out the influence of parameters on flows, graphs are plotted velocity, temperature, concentration, microorganism curves. boundary layer thickness profile reduces Schmidt number Peclet number. addition to adding radiative heat flux, we added generation, rate chemical reaction, first-order slip. Adding these new aspects underlying profiles. Moreover, obtained data skin friction coefficient, local Nusselt number, Sherwood density motile microorganisms tabulated against various physical parameters. From results, it apparent that decreases Brownian thermophoretic close agreement published data. Finally, slip conditions significantly when comparison drawn no-slip condition.
منابع مشابه
Unsteady free convection oscillatory couette flow through a variable porous medium with concentration profile
In this paper we have studied the effect of free convection on the heat transfer and flow through variable porous medium which is bounded by two vertical parallel porous plates. In this study it is assume that free stream velocity oscillates with time about a constant mean. Periodic temperature is considered in the moving plate. Effect of different parameters on mean flow velocity, Transient ve...
متن کاملThe Density-Driven Nanofluid Convection in an Anisotropic Porous Medium Layer with Rotation and Variable Gravity Field: A Numerical Investigation
In this study, a numerical examination of the significance of rotation and changeable gravitational field on the start of nanofluid convective movement in an anisotropic porous medium layer is shown. A model that accounts for the impact of Brownian diffusion and thermophoresis is used for nanofluid, while Darcy’s law is taken for the porous medium. The porous layer is subjected to uniform rotat...
متن کاملAxisymmetric Magnetohydrodynamic Squeezing flow of Nanofluid in Porous Media under the influence of Slip Boundary Condition
The various industrial, biological and engineering applications of flow of squeezing flow of fluid between parallel plates have been the impetus for the continued interest and generation renewed interests on the subject. As a part of the renewed interests, this paper presents the study of axisymmetric magnetohydrodynamic squeezing flow of nanofluid in porous media under the influence of slip bo...
متن کاملMagnetohydrodynamic Free Convection Flows with Thermal Memory over a Moving Vertical Plate in Porous Medium
The unsteady hydro-magnetic free convection flow with heat transfer of a linearly viscous, incompressible, electrically conducting fluid near a moving vertical plate with the constant heat is investigated. The flow domain is the porous half-space and a magnetic field of a variable direction is applied. The Caputo time-fractional derivative is employed in order to introduce a thermal flux consti...
متن کاملHeat Transfer Analysis of Nanofluid Flow with Porous Medium through Jeffery Hamel Diverging/Converging Channel
In this paper, flow and heat transfer of nanofluid through a converging or diverging channel with porous medium is investigated. The fluid constantly flows under the effect of magnetic field through the channel. The diverging/converging fluid motion is modeled using the momentum and energy equations. The influence of some parameters such as opening channel angle, Reynolds number and Darcy’s num...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2021
ISSN: ['1026-7077', '1563-5147', '1024-123X']
DOI: https://doi.org/10.1155/2021/6666863